Sunday, 19 June 2016

3D CNN in Keras - Action Recognition


# The code for 3D CNN for Action Recognition
# Please refer to the youtube video for this lesson

3D CNN-Action Recognition Part-1





3D CNN-Action Recognition Part-2


from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution3D, MaxPooling3D

from keras.optimizers import SGD, RMSprop
from keras.utils import np_utils, generic_utils

import theano
import os
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import cv2
from sklearn.cross_validation import train_test_split
from sklearn import cross_validation
from sklearn import preprocessing


# image specification
img_rows,img_cols,img_depth=16,16,15


# Training data

X_tr=[]           # variable to store entire dataset

#Reading boxing action class

listing = os.listdir('kth dataset/boxing')

for vid in listing:
    vid = 'kth dataset/boxing/'+vid
    frames = []
    cap = cv2.VideoCapture(vid)
    fps = cap.get(5)
    print "Frames per second using video.get(cv2.cv.CV_CAP_PROP_FPS): {0}".format(fps)
 

    for k in xrange(15):
        ret, frame = cap.read()
        frame=cv2.resize(frame,(img_rows,img_cols),interpolation=cv2.INTER_AREA)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
         frames.append(gray)

        #plt.imshow(gray, cmap = plt.get_cmap('gray'))
        #plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
        #plt.show()
        #cv2.imshow('frame',gray)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()

    input=np.array(frames)

    print input.shape
    ipt=np.rollaxis(np.rollaxis(input,2,0),2,0)
    print ipt.shape

    X_tr.append(ipt)

#Reading hand clapping action class

listing2 = os.listdir('kth dataset/handclapping')

for vid2 in listing2:
    vid2 = 'kth dataset/handclapping/'+vid2
    frames = []
    cap = cv2.VideoCapture(vid2)
    fps = cap.get(5)
    print "Frames per second using video.get(cv2.cv.CV_CAP_PROP_FPS): {0}".format(fps)

    for k in xrange(15):
        ret, frame = cap.read()
        frame=cv2.resize(frame,(img_rows,img_cols),interpolation=cv2.INTER_AREA)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        frames.append(gray)

        #plt.imshow(gray, cmap = plt.get_cmap('gray'))
        #plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
        #plt.show()
        #cv2.imshow('frame',gray)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()
    input=np.array(frames)

    print input.shape
    ipt=np.rollaxis(np.rollaxis(input,2,0),2,0)
    print ipt.shape

    X_tr.append(ipt)

#Reading hand waving action class

listing3 = os.listdir('kth dataset/handwaving')

for vid3 in listing3:
    vid3 = 'kth dataset/handwaving/'+vid3
    frames = []
    cap = cv2.VideoCapture(vid3)
    fps = cap.get(5)
    print "Frames per second using video.get(cv2.cv.CV_CAP_PROP_FPS): {0}".format(fps)

    for k in xrange(15):
        ret, frame = cap.read()
        frame=cv2.resize(frame,(img_rows,img_cols),interpolation=cv2.INTER_AREA)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        frames.append(gray)

        #plt.imshow(gray, cmap = plt.get_cmap('gray'))
        #plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
        #plt.show()
        #cv2.imshow('frame',gray)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()
    input=np.array(frames)

    print input.shape
    ipt=np.rollaxis(np.rollaxis(input,2,0),2,0)
    print ipt.shape

    X_tr.append(ipt)

#Reading jogging action class

listing4 = os.listdir('kth dataset/jogging')

for vid4 in listing4:
    vid4 = 'kth dataset/jogging/'+vid4
    frames = []
    cap = cv2.VideoCapture(vid4)
    fps = cap.get(5)
    print "Frames per second using video.get(cv2.cv.CV_CAP_PROP_FPS): {0}".format(fps)

    for k in xrange(15):
        ret, frame = cap.read()
        frame=cv2.resize(frame,(img_rows,img_cols),interpolation=cv2.INTER_AREA)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        frames.append(gray)

        #plt.imshow(gray, cmap = plt.get_cmap('gray'))
        #plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
        #plt.show()
        #cv2.imshow('frame',gray)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()
    input=np.array(frames)

    print input.shape
    ipt=np.rollaxis(np.rollaxis(input,2,0),2,0)
    print ipt.shape

    X_tr.append(ipt)

#Reading running action class
 
listing5 = os.listdir('kth dataset/running')

for vid5 in listing5:
    vid5 = 'kth dataset/running/'+vid5
    frames = []
    cap = cv2.VideoCapture(vid5)
    fps = cap.get(5)
    print "Frames per second using video.get(cv2.cv.CV_CAP_PROP_FPS): {0}".format(fps)

    for k in xrange(15):
        ret, frame = cap.read()
        frame=cv2.resize(frame,(img_rows,img_cols),interpolation=cv2.INTER_AREA)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        frames.append(gray)

        #plt.imshow(gray, cmap = plt.get_cmap('gray'))
        #plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
        #plt.show()
        #cv2.imshow('frame',gray)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()
    input=np.array(frames)

    print input.shape
    ipt=np.rollaxis(np.rollaxis(input,2,0),2,0)
    print ipt.shape

    X_tr.append(ipt)
 

#Reading walking action class 

listing6 = os.listdir('kth dataset/walking')

for vid6 in listing6:
    vid6 = 'kth dataset/walking/'+vid6
    frames = []
    cap = cv2.VideoCapture(vid6)
    fps = cap.get(5)
    print "Frames per second using video.get(cv2.cv.CV_CAP_PROP_FPS): {0}".format(fps)

    for k in xrange(15):
        ret, frame = cap.read()
        frame=cv2.resize(frame,(img_rows,img_cols),interpolation=cv2.INTER_AREA)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        frames.append(gray)

        #plt.imshow(gray, cmap = plt.get_cmap('gray'))
        #plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
        #plt.show()
        #cv2.imshow('frame',gray)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()
    input=np.array(frames)

    print input.shape
    ipt=np.rollaxis(np.rollaxis(input,2,0),2,0)
    print ipt.shape

    X_tr.append(ipt)



X_tr_array = np.array(X_tr)   # convert the frames read into array

num_samples = len(X_tr_array)
print num_samples

#Assign Label to each class

label=np.ones((num_samples,),dtype = int)
label[0:100]= 0
label[100:199] = 1
label[199:299] = 2
label[299:399] = 3
label[399:499]= 4
label[499:] = 5


train_data = [X_tr_array,label]

(X_train, y_train) = (train_data[0],train_data[1])
print('X_Train shape:', X_train.shape)

train_set = np.zeros((num_samples, 1, img_rows,img_cols,img_depth))

for h in xrange(num_samples):
    train_set[h][0][:][:][:]=X_train[h,:,:,:]
 

patch_size = 15    # img_depth or number of frames used for each video

print(train_set.shape, 'train samples')

# CNN Training parameters

batch_size = 2
nb_classes = 6
nb_epoch =50

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)


# number of convolutional filters to use at each layer
nb_filters = [32, 32]

# level of pooling to perform at each layer (POOL x POOL)
nb_pool = [3, 3]

# level of convolution to perform at each layer (CONV x CONV)
nb_conv = [5,5]

# Pre-processing

train_set = train_set.astype('float32')

train_set -= np.mean(train_set)

train_set /=np.max(train_set)



# Define model

model = Sequential()
model.add(Convolution3D(nb_filters[0],nb_depth=nb_conv[0], nb_row=nb_conv[0], nb_col=nb_conv[0], input_shape=(1, img_rows, img_cols, patch_size), activation='relu'))

model.add(MaxPooling3D(pool_size=(nb_pool[0], nb_pool[0], nb_pool[0])))

model.add(Dropout(0.5))

model.add(Flatten())

model.add(Dense(128, init='normal', activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(nb_classes,init='normal'))

model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy', optimizer='RMSprop')

 
# Split the data

X_train_new, X_val_new, y_train_new,y_val_new =  train_test_split(train_set, Y_train, test_size=0.2, random_state=4)


# Train the model

hist = model.fit(X_train_new, y_train_new, validation_data=(X_val_new,y_val_new),
          batch_size=batch_size,nb_epoch = nb_epoch,show_accuracy=True,shuffle=True)


#hist = model.fit(train_set, Y_train, batch_size=batch_size,
#         nb_epoch=nb_epoch,validation_split=0.2, show_accuracy=True,
#           shuffle=True)


 # Evaluate the model
score = model.evaluate(X_val_new, y_val_new, batch_size=batch_size, show_accuracy=True)
print('Test score:', score[0])
print('Test accuracy:', score[1])



# Plot the results
train_loss=hist.history['loss']
val_loss=hist.history['val_loss']
train_acc=hist.history['acc']
val_acc=hist.history['val_acc']
xc=range(100)

plt.figure(1,figsize=(7,5))
plt.plot(xc,train_loss)
plt.plot(xc,val_loss)
plt.xlabel('num of Epochs')
plt.ylabel('loss')
plt.title('train_loss vs val_loss')
plt.grid(True)
plt.legend(['train','val'])
print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])

plt.figure(2,figsize=(7,5))
plt.plot(xc,train_acc)
plt.plot(xc,val_acc)
plt.xlabel('num of Epochs')
plt.ylabel('accuracy')
plt.title('train_acc vs val_acc')
plt.grid(True)
plt.legend(['train','val'],loc=4)
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])

44 comments:

  1. Hi man! Thanks a lot for your post. But I have a problem I can't solve by google for a long time. That's "TypeError: __init__() takes at least 5 arguments (5 given)" When model add Convolution3D. Do u have this problem solved? Thanks in advance!

    ReplyDelete
    Replies
    1. model.add(Convolution3D(nb_filters[0], kernel_dim1=nb_conv[0], kernel_dim2=nb_conv[0], kernel_dim3=nb_conv[0],
      input_shape=(1, img_rows, img_cols, img_depth), activation='relu'))


      Convolution3D parameter order has changed a little.

      Delete
    2. Thanks a lot! I also find out it recently~

      Delete
    3. TypeError: __init__() missing 1 required positional argument: 'kernel_size'
      i am facing this error while loading the 3d model. Can some1 help me please

      Delete
  2. This comment has been removed by the author.

    ReplyDelete
  3. This comment has been removed by the author.

    ReplyDelete
  4. Even I tried the identical code written here, I am not getting loss value and my accuracy does not change, like this:
    2s - loss: nan - acc: 0.1729 - val_loss: nan - val_acc: 0.1417.
    Also, testing took 0 second: 120/120 [==============================] - 0s
    So, at the end, I have the output like this:
    ('Test score:', nan)
    ('Test accuracy:', 0.14166666865348815).
    What would be the reason, I couldn't solve the problem here, any help would be appreciated.
    Thanks for the tutorial and the code !

    ReplyDelete
  5. This comment has been removed by the author.

    ReplyDelete
  6. This comment has been removed by the author.

    ReplyDelete
    Replies
    1. This comment has been removed by the author.

      Delete
  7. model.add(Dense(128, init='normal', activation='relu'))

    ValueError: negative dimensions are not allowed
    Getting this error. Can you please rectify it why?

    ReplyDelete
    Replies
    1. Just add the following code bro:

      from keras import backend as K
      K.set_image_dim_ordering('th')

      Delete
  8. Hi there,

    As per your suggestion I updated line model.add(Convolution3D...
    Now I am getting following error
    ('X_Train shape:', (599, 16, 16, 15))
    ((599, 1, 16, 16, 15), 'train samples')
    Traceback (most recent call last):
    File "test3d.py", line 302, in
    model.add(Convolution3D(nb_filters[0], kernel_dim1=nb_conv[0], kernel_dim2=nb_conv[0], kernel_dim3=nb_conv[0],input_shape=(1, img_rows, img_cols, img_depth), activation='relu'))
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/keras/models.py", line 299, in add
    layer.create_input_layer(batch_input_shape, input_dtype)
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/keras/engine/topology.py", line 401, in create_input_layer
    self(x)
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/keras/engine/topology.py", line 572, in __call__
    self.add_inbound_node(inbound_layers, node_indices, tensor_indices)
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/keras/engine/topology.py", line 635, in add_inbound_node
    Node.create_node(self, inbound_layers, node_indices, tensor_indices)
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/keras/engine/topology.py", line 166, in create_node
    output_tensors = to_list(outbound_layer.call(input_tensors[0], mask=input_masks[0]))
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/keras/layers/convolutional.py", line 1234, in call
    filter_shape=self.W_shape)
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/keras/backend/tensorflow_backend.py", line 2831, in conv3d
    x = tf.nn.conv3d(x, kernel, strides, padding)
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/gen_nn_ops.py", line 522, in conv3d
    strides=strides, padding=padding, name=name)
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 763, in apply_op
    op_def=op_def)
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2397, in create_op
    set_shapes_for_outputs(ret)
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1757, in set_shapes_for_outputs
    shapes = shape_func(op)
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1707, in call_with_requiring
    return call_cpp_shape_fn(op, require_shape_fn=True)
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/common_shapes.py", line 610, in call_cpp_shape_fn
    debug_python_shape_fn, require_shape_fn)
    File "/home/dejan/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/common_shapes.py", line 675, in _call_cpp_shape_fn_impl
    raise ValueError(err.message)
    ValueError: Negative dimension size caused by subtracting 5 from 1 for 'Conv3D' (op: 'Conv3D') with input shapes: [?,1,16,16,15], [5,5,5,15,32].

    Any idea what is causing this error.

    Thanks,

    Dejan

    ReplyDelete
  9. Great tutorial!!!

    What about color video. What changes are necessary for color video clips.

    ReplyDelete
  10. I'm sorry could you explain that Why we have to roll our video dimention ??

    ReplyDelete
  11. This comment has been removed by the author.

    ReplyDelete
  12. Hi Anuj
    can you tell me how to move from tensorflow backend to theano backend because i have install thenao backend and i am using anaconda3 and python3.6 when i am running first cell (means from keras....) i am getting like using tensorflow as backend in IPython console

    ReplyDelete
  13. Hey do you have a pretrained model of this cnn?

    ReplyDelete
  14. After training how to predict in new video???

    ReplyDelete
  15. how much is the accuracy for this?
    have u used GPU or trained on CPU?

    ReplyDelete
  16. I face error in this line: model.add(Convolution3D(nb_filters[0],nb_depth=nb_conv[0], nb_row=nb_conv[0], nb_col=nb_conv[0], input_shape=(1, img_rows, img_cols, patch_size), activation='relu'))

    the error is TypeError: __init__() takes at least 3 arguments (3 given)

    can you please help me

    ReplyDelete
    Replies
    1. add
      from keras import backend as K
      K.set_image_dim_ordering('th')

      Delete
  17. I can't run this line: model.compile(loss = 'categorical_crossentropy', optimizer = 'RMSprop')
    It shows that no conv3d function. Anyone know how to solve?

    ReplyDelete
  18. how a can test a video for this train script can you give me a script of prediction

    ReplyDelete
  19. i face error TypeError: __init__() missing 1 required positional argument: 'kernel_size'
    can you please help me ?

    ReplyDelete
    Replies
    1. This comment has been removed by the author.

      Delete
    2. Try this:
      model.add(Convolution3D(nb_filters[0],kernel_dim1=nb_conv[0], kernel_dim2=nb_conv[0],kernel_dim3=nb_conv[0], input_shape=(1, img_rows, img_cols, patch_size), activation='relu'))

      After this am getting new error...let try from your end

      Delete
    3. model.add(Dense(128, activation='relu', kernel_initializer='normal'))

      ValueError: ('Non-positive dimensions not allowed in size.', (-512, 128), -512)

      I'm getting this error. Need help

      Delete
  20. if cv2.waitKey(1) & 0xFF == ord('q'):
    break

    I am getting error at this line. function is not implemented. rebuild the libraries.

    ReplyDelete
  21. train_data = [X_tr_array,label]

    (X_train, y_train) = (train_data[0],train_data[1])
    #print('X_Train shape:', X_train.shape)
    #print('y_Train shape:', y_train.shape)

    train_set = np.zeros((num_samples, 1,img_rows,img_cols,img_depth))
    print (X_train.shape)
    print (train_set.shape)

    for h in range(num_samples):
    train_set[h][0][:][:][:]=X_train[h,:,:,:]
    -----------------------------------------------------------------------
    IndexError Traceback (most recent call last)
    in
    18
    19 for h in range(num_samples):
    ---> 20 train_set[h][0][:][:][:]=X_train[h,:,:,:]

    IndexError: too many indices for array

    Can anyone help me with this error.

    ReplyDelete
    Replies
    1. you have resolved this issue or not? i'm also getting this error. please tell if got the solution.

      Delete
  22. model.add(Dense(128, activation='relu', kernel_initializer='normal'))

    ValueError: ('Non-positive dimensions not allowed in size.', (-512, 128), -512)

    I'm getting this error. Need help

    ReplyDelete
  23. how to test it on real time video

    ReplyDelete
  24. Thanks for the information. keep sharing.

    ReplyDelete





  25. can you help me to solve this issue..
    DisabledFunctionError Traceback (most recent call last)
    in ()
    45 plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis
    46 plt.show()
    ---> 47 cv2.imshow('frame',gray)
    48 if cv2.waitKey(1) & 0xFF == ord('q'):
    49 break

    /usr/local/lib/python3.6/dist-packages/google/colab/_import_hooks/_cv2.py in wrapped(*args, **kwargs)
    50 def wrapped(*args, **kwargs):
    51 if not os.environ.get(env_var, False):
    ---> 52 raise DisabledFunctionError(message, name or func.__name__)
    53 return func(*args, **kwargs)
    54

    DisabledFunctionError: cv2.imshow() is disabled in Colab, because it causes Jupyter sessions
    to crash; see https://github.com/jupyter/notebook/issues/3935.
    As a substitution, consider using
    from google.colab.patches import cv2_imshow

    ReplyDelete
    Replies
    1. can you help me to solve this error

      -----
      TypeError Traceback (most recent call last)
      /content/gdrive/My Drive/kth-dataset_action/kth_recognition.py in ()
      290
      291 model = Sequential()
      --> 292 model.add(Convolution3D(nb_filters[0],nb_depth=nb_conv[0], nb_row=nb_conv[0], nb_col=nb_conv[0], input_shape=(1, img_rows, img_cols, patch_size), activation='relu'))
      293 model.add(MaxPooling3D(pool_size=(nb_pool[0], nb_pool[0], nb_pool[0])))
      294

      TypeError: __init__() missing 1 required positional argument: 'kernel_size'

      Delete
  26. for this code

    from keras.preprocessing.image import ImageDataGenerator
    from keras.models import Sequential
    from keras.layers.core import Dense, Dropout, Activation, Flatten
    from keras.layers.convolutional import Convolution3D, MaxPooling3D

    from keras.optimizers import SGD, RMSprop
    from keras.utils import np_utils, generic_utils

    import theano
    import os
    import matplotlib
    import matplotlib.pyplot as plt
    import numpy as np
    import cv2
    from sklearn.cross_validation import train_test_split
    from sklearn import cross_validation
    from sklearn import preprocessing


    # image specification
    img_rows,img_cols,img_depth=128,128,15


    # Training data

    X_tr=[] # variable to store entire dataset

    #Reading boxing action class

    listing = os.listdir('F:/UT INTERACTION/KTH/boxing')

    for vid in listing:
    vid = 'F:/UT INTERACTION/KTH/boxing/'+vid
    frames = []
    cap = cv2.VideoCapture(vid)
    #fps = cap.get(5)
    #print "Frames per second using video.get(cv2.cv.CV_CAP_PROP_FPS): {0}".format(fps)

    for k in xrange(15):
    frame = cap.read()
    frame = np.asarray(frame, dtype=np.uint8)

    frame=cv2.resize(frame,(img_rows,img_cols),interpolation=cv2.INTER_AREA)
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    frames.append(gray)

    #plt.imshow(gray, cmap = plt.get_cmap('gray'))
    #plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis
    #plt.show()
    #cv2.imshow('frame',gray)


    cv2.imshow('frame',gray)

    if cv2.waitKey(1) & 0xFF == ord('q'):
    break

    cap.release()
    cv2.destroyAllWindows()

    input=np.array(frames)

    print input.shape
    ipt=np.rollaxis(np.rollaxis(input,2,0),2,0)
    print ipt.shape

    X_tr.append(ipt)


    getting error


    File "C:\Users\LENOVO\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3267, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)

    File "", line 1, in
    runfile('F:/activity datasets/readVideo.py', wdir='F:/activity datasets')

    File "C:\Users\LENOVO\Anaconda3\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 704, in runfile
    execfile(filename, namespace)

    File "C:\Users\LENOVO\Anaconda3\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 108, in execfile
    exec(compile(f.read(), filename, 'exec'), namespace)

    File "F:/activity datasets/readVideo.py", line 44
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    ^
    IndentationError: unexpected indent

    could you please help me

    ReplyDelete
  27. model.add(Conv3D(nb_filters[0],kernel_dim1=nb_conv[0],kernel_dim2=nb_conv[0],kernel_dim3=nb_conv[0],input_shape=(1, img_rows, img_cols, img_depth), activation='relu'))

    TypeError: __init__() missing 1 required positional argument: 'kernel_size'

    ReplyDelete
  28. hist = model.fit(train_set, Y_train, batch_size=batch_size, epochs=nb_epoch,validation_split=0.2,shuffle=True)

    getting error when i run this code
    error is
    ValueError: Input 0 of layer sequential_5 is incompatible with the layer: expected axis -1 of input shape to have value 5 but received input with shape (None, 1, 16, 16, 15)

    ReplyDelete
  29. how can i get this original image sources?

    ReplyDelete