% 1 is the default id of webcam
vid = videoinput('winvideo',1,'YUY2_640x480');
% Set the properties of the video object
set(vid, 'FramesPerTrigger', Inf);
set(vid, 'ReturnedColorspace', 'rgb')
vid.FrameGrabInterval = 5;
%start the video aquisition here
start(vid)
% Set a loop that stop after 400 frames of aquisition
while(vid.FramesAcquired<=400)
% Get the snapshot of the current frame
im = getsnapshot(vid);
% Now to detect red objects in real time we have to subtract the red component layer
% from the grayscale image to extract all the red objects in the image.
im2 = imsubtract(data(:,:,1), rgb2gray(data));
%Use a median filter to filter out noise in the image
im3 = medfilt2(im2, [3 3]);
% Convert the resulting grayscale image into a binary image.
im4 = im2bw(im3,0.18);
% Remove all those objects less than 300 pixels.
im5 = bwareaopen(im4,300);
% Label all the connected components in the image.
bw = bwlabel(im5, 8);
% We get a set of properties for each labeled region.
stats=regionprops(bw,'BoundingBox','Centroid');
% Display the image
imshow(im)
hold on
%This is a loop to bound the red objects in a rectangular box.
for object = 1:length(stats)
bb = stats(object).BoundingBox;
bc = stats(object).Centroid;
rectangle('Position',bb,'EdgeColor','r','LineWidth',2)
plot(bc(1),bc(2), '-m+')
a=text(bc(1),bc(2), strcat('X: ', num2str(round(bc(1))), ' Y: ', num2str(round(bc(2)))));
set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize', 12, 'Color', 'yellow');
end
hold off
end
% Both the loops end here.
% Stop the video aquisition.
stop(vid);
% Flush all the image data stored in the memory buffer.
flushdata(vid);
% Clear all variables
clear all
vid = videoinput('winvideo',1,'YUY2_640x480');
% Set the properties of the video object
set(vid, 'FramesPerTrigger', Inf);
set(vid, 'ReturnedColorspace', 'rgb')
vid.FrameGrabInterval = 5;
%start the video aquisition here
start(vid)
% Set a loop that stop after 400 frames of aquisition
while(vid.FramesAcquired<=400)
% Get the snapshot of the current frame
im = getsnapshot(vid);
% Now to detect red objects in real time we have to subtract the red component layer
% from the grayscale image to extract all the red objects in the image.
im2 = imsubtract(data(:,:,1), rgb2gray(data));
%Use a median filter to filter out noise in the image
im3 = medfilt2(im2, [3 3]);
% Convert the resulting grayscale image into a binary image.
im4 = im2bw(im3,0.18);
% Remove all those objects less than 300 pixels.
im5 = bwareaopen(im4,300);
% Label all the connected components in the image.
bw = bwlabel(im5, 8);
% We get a set of properties for each labeled region.
stats=regionprops(bw,'BoundingBox','Centroid');
% Display the image
imshow(im)
hold on
%This is a loop to bound the red objects in a rectangular box.
for object = 1:length(stats)
bb = stats(object).BoundingBox;
bc = stats(object).Centroid;
rectangle('Position',bb,'EdgeColor','r','LineWidth',2)
plot(bc(1),bc(2), '-m+')
a=text(bc(1),bc(2), strcat('X: ', num2str(round(bc(1))), ' Y: ', num2str(round(bc(2)))));
set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize', 12, 'Color', 'yellow');
end
hold off
end
% Both the loops end here.
% Stop the video aquisition.
stop(vid);
% Flush all the image data stored in the memory buffer.
flushdata(vid);
% Clear all variables
clear all
No comments:
Post a Comment